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Abstract

Results from an analytical study on simultaneous neural
network control of rotor blade vortex interaction (BVI)
noise and hub loads are presented in this paper. The
present study is an extension of an earlier investigation
on neural network identification and control of rotorcraft
hub loads. An objective function consisting of the
weighted sum of the squares of a four-microphone-
average-of-advancing-sidé-noise and a vibratory-hub-
loads-metric was used to characterize the BVI noise and
vibratory hub loads. The noise and hub loads data were
obtained from a wind tunnel test of a four-bladed rotor
with individual blade control during simulated descent.
The neural network control procedure was bound by the
following ground rules: the controller must converge
quickly (in six iterations or fewer) and gradient-based
optimization techniques must not be used. A simple
iterative procedure for neural control was applied. Two
neural networks were used in the procedure requiring a
plant model (using a radial-basis function neural
network) and separately, an “inverted neural network for
control” model (using a back-propagation neural
network). A simple calculation that halves the objective
function was used in order to speed up convergence. A
nonlinear transformation was applied in the reduced data
base case in order to make the present neural network
control procedure successful for that case as well. For
the basic (benchmark) case, the neural network controller
successfully achieved simultaneous reductions of 5 dB in
the advancing side noise and 54% in the hub loads.
Finally, a comparison of the results from the present
neural network controller with those from a one-step
deterministic controller showed that neural network
control was more robust.
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Vector of 2P blade pitch control inputs,
of size2x 1

Vector of optimal 2P blade pitch
control inputs, of size2x 1

Oim IBC contribution to blade pitch, m’th
harmonic pitch for i’th blade

1! Advance ratio, V/(QR)

c Rotor solidity, Npc/nR

6] Experimental 2P control phase input,
deg

PN, i Neural network controller 2P control
phase input for the i'th iteration, deg

DN 2P control phase input predicted by
inverted neural network for control,
deg

p Air density, slugs/ft’

v Rotor azimuth angle, deg

Q Rotor rotational speed, rad/sec

Introduction

The development and implementation of a robust active
control system for helicopter acromechanics must include
a method for accurate identification of aircraft parameters
and a robust scheme to generate optimal control inputs to
best realize a set of objective functions. Specifically, for
the aeromechanic problem investigated in this paper, the
controller's task would be to first, identify the nonlinear
relationship between the rotor induced acoustic and
vibration levels, and second, to generate optimal higher
harmonic control (HHC) or individual blade control
(IBC) pitch control inputs that simultaneously reduce
noise and vibration.

As a background to the present neural control study on
rotor noise and hub loads, a few relevant studies on the
phenomenon of blade vortex interaction (BVI) rotor
noise are summarized here. Schmitz (Ref. 1) presents an
authoritative, easily readable discussion on rotor noise
including BVI noise, and the research studies by
Kitaplioglu, et al. (Ref. 2 ) and McCluer, et al. (Ref. 3)
represent recent research,

Rotorcraft advancing side blade vortex interaction noise
and vibratory hub loads almost always behave
nonlinearly with respect to the phase of an HHC or IBC
pitch input.

For rotors with HHC pitch inputs, the noise related
nonlinear behavior is evident in wind tunnel test results
(Kottapalli, et al., Ref. 4). More recently, noise related
nonlinear behavior was observed in wind tunnel test
result with IBC pitch inputs (Swanson, et al., Refs. 5 and
6, and Jacklin, et al., Ref. 7).



For rotors with HHC pitch inputs, the hub loads related
nonlinear behavior is evident in: wind tunnel test results
(Ref. 4); flight test results (Miao, et al., Ref. 8); and
analytical results (O’Leary, et al., Ref. 9). More recently,
hub loads related nonlinear behavior was observed in
wind tunnel test results with IBC pitch inputs (Jacklin, et
al., Ref. 7).

Neural network based techniques are attractive nonlinear
methods for control of nonlinear systems. Neural
networks do not necessarily require large amounts of
computational resources or central processor time.
Additionally, they appear easy to apply and understand.
A successful neural network application enables the
accurate identification of important rotorcraft nonlinear
parameters and subsequent calculation of the optimal
control inputs. An efficient neural network application
can enable the hardware implementation of feedback
control systems. In the present context, hardware
implementation refers to the complete control system and
its functions (which includes modeling, predicting,
optimizing, and controlling).

The application of neural networks to rotorcraft
aeromechanics control is still new; therefore, available
literature is limited. For example, in rotorcraft dynamics
control, the following literature is available: the 1997
study on identification and control by Kottapalli (Ref.
10), and the 1995 studies on identification by Kottapalli,
etal. (Refs. 11 and 12).

However, the following references have been useful for
the present investigation. The handbook on intelligent
control by White and Sofge (Ref. 13) covers neural
control and other approaches. Miller, et al. (Ref. 14),
Wasserman (Ref. 15), Werbos (Ref. 16), Omatu (Ref.
17), and Pham and Liu (Ref. 18) discuss various neural
control approaches. Werbos (Ref. 16) classifies existing
neural control approaches into five types: supervised
control systems, direct inverse control, neural adaptive
control, back-propagation-through-time, and adaptive
critic methods. Other classifications exist (for example,
Omatu, et al., Ref. 17). Psaltis, et al. (Ref. 19) discuss
architectures associated with training neural networks for
neural control. The survey paper by Hunt, et al. (Ref. 20)
covers neural networks for control systems. Faller, et al.,
(Ref. 21) actually consider a fixed-wing aerodynamics
application of neural control, namely, real time
identification and control of 3-D unsteady separated
flow.

The present study is an extension of an earlier
investigation on neural network identification and control
of rotorcraft hub loads (Ref. 10). The objective of the
present study is to develop a robust, neural network
based controller to simultaneously minimize advancing
side BVI noise and vibratory hub loads. An objective

function consisting of the weighted sum of the squares of
a four-microphone-average-of-advancing-side-noise and
a vibratory-hub-loads-metric was used to characterize the
BVI noise and vibratory hub loads. The noise and hub

- loads data were obtained from a wind tunnel test of a

four-bladed rotor with individual blade control during
simulated descent. The neural controller is required to be
relatively quick in its execution and not be
computationally intensive. Thus, the present neural
network control procedure is bound by the following
ground rules: the controller must converge in six
iterations or fewer and gradient-based optimization
techniques must not be used.

This study begins with a description of two types of plant
models: single-input, single-output (SISO) and single-
input, multi-output (SIMO). The SISO model predicts an
advancing side noise metric; the SIMO model predicts
both the advancing side noise metric and the vibratory
hub loads metric. The objective function used in the
SIMO application is discussed. Next, the neural network
control procedure (based on an existing, neural control
technique called the “direct inverse” method, Ref. 15) is
described.

The experimental data are then described. Next, five
cases are examined. The first four cases pertain to
neural control and results are presented in the following
sequence: plant model results, inverted neural network
for control results, and finally, the neural controller’s
convergence sequence which includes demonstrated
simultaneous control of noise and hub loads. The
nonlinear transformation applied in one of the four neural
control application cases (the reduced data base case) is
discussed. The fifth case looks into the performance of a
traditional, one-step deterministic controller and
compares its results with those from the neural controller.
The fifth case (one-step deterministic controller) includes
the first three neural control cases as three, one-step-
deterministic-controller subcases. Finally, observations
derived from this study are presented.

Plant Model

Kottapalli, et al. (Refs. 11 and 12) have developed
procedures for deriving neural network plant models that
can be used in the present rotorcraft acoustics and
dynamics (controls) application. Single-input, single-
output and multiple-input, single-output (MISO)
applications were considered in Ref. 11, and the
multiple-input, multiple-output (MIMO) application was
considered in Ref. 12. Background material on these
applications is given in Ref, 11.

In the present study, both SISO and SIMO applications
are considered. These plant models are briefly described
below.



Single-Input, Single-Output Plant Model

In the SISO application, the network training input is the
2P control phase input ®7 where the pitch control
amplitude A2 is maintained at 1.0 deg. The network
output is the advancing side noise metric (ASNM) which
is discussed as follows.

Advancing Side Noise Metric (ASNM). The present
noise metric ASNM was obtained from a four-
microphone average of advancing side noise
measurements taken during the second U.S./German IBC
wind tunnel test (Refs. 5,6, and 7). The test article was
a four-bladed BO-105 hingeless rotor system. The rotor
system was tested in the NASA Ames 40- by 80-Foot
Wind Tunnel. Figure 1 (Ref. S) shows a general layout
of the rotor and microphones in the wind tunnel test
section. The present ASNM was obtained by taking the
average of the noise measurements from microphones 1,
2, 3, and 4 with the traverse location fixed at the
advancing side position X = 16.41 ft, Fig. 1. The four
sound pressure levels (SPL's) from the microphones were
individually summed over the 6th through 40th blade
passage frequency band and subsequently averaged to
give the present band-limited, sound pressure level based
ASNM (BL-SPL ASNM).

Accurate plant modeling in the present SISO application
was obtained by using a two-hidden-layer radial basis
function (RBF) type of neural network depicted by "1-
12-4-1 RBF network." Reference 11 contains more
information on how appropriate two-hidden-layered RBF
networks are selected as plant models. In the above
depiction, the leading and trailing 1's refer to the single
input and the single output, and the 12 and 4 refer to the
number of processing elements in the first and second
hidden layers, respectively.

Single-Input, Multiple-Output Plant Model

The majority of the present neural network results
involve the use of the SIMO plant model. In the SIMO
application, the network training input is again the 2P
control phase input @2 with A2 = 1.0 deg. The two
network outputs are the advancing side noise metric
(ASNM) and the vibratory hub loads metric (VHLM).
Accurate plant modeling was obtained by using a 1-12-4-
2 RBF network.

Objective Function

For the SIMO application, the present study characterizes
the advancing side rotor BVI noise and vibratory hub
loads by an objective function. The objective function
consists of a weighted sum of the squares of a four-
microphone-average of advancing side BVI noise and a
vibratory hub loads metric:

J = (Wasnm) ASNM2 + VHLMZ )

where W asNM is a specified weight. For brevity, the
advancing side noise and vibratory hub loads objective
function is referred to as the noise and hub loads
objective function.

The introduction of the noise and hub loads objective
function J makes the neural network control procedure
developed in Ref. 10 directly applicable to the present
noise and hub loads control problem. In the present
SIMO application, the objective function J (or the
transformed objective function JT - see Case 4 in Results
section) takes the place of the metric VHLM used in Ref.
10.

Neural Network Control Procedure

The present control procedure was finalized after
conducting a survey of neural network control techniques
and trying several control procedures. In the present
SISO and SIMO cases it is possible to obtain accurate
modeling and prediction for simulating the plant model
being controlled. Therefore, the present control
procedure does not include the plant itself. This
simplification results in a control procedure that may be
classified as "direct control” (Narendra and
Parthasarathy, Ref. 22).

A modified version of the "direct inverse control” method
in neural control (Wasserman, Ref. 15) is used in this
study. This approach is attractive in the present context
because of its simplicity and straightforward
implementation. This approach does not involve
gradient-based optimization techniques. This method
assumes that the plant model is invertible, i.e., a unique
dependent (y-axis) value exists for a given independent
(x-axis) value. Mathematically, Ref. 15 describes the
application of the method in the following manner. Let F
be the plant model and F~1 its inverse. The combined
system includes the inverse model followed by the plant
model. A desired system response that is input to F!
would ideally give the desired system response as the
output of Fsince [ (F'1) F]=[1]. Therefore, 10
achieve a desired system output, it is only necessary to
provide the specific desired system output as an input
(Ref. 15). Without feedback, serious questions can arise
regarding the robustness of this method (Ref. 20).

Also, the present plant models (for noise outputs and for
combined noise/vibration outputs) are nonlinear and
hence noninvertible. Consider the following example.
For the linear system y = x, the resulting variation is a
straight line; this system is invertible. For the nonlinear
system y = x2, the resulting variation is a parabola. This
system is noninvertible because when the axes are



inverted, a given "new" x-value does notresultin a
unique y-value. Recall that the direct inverse control
method assumes that the plant model is invertible. The
following subsections describe how the presently
modified direct inverse control method is applied to
rotorcraft acoustics and dynamics controls applications of
interest that involve nonlinear (noninvertible) plant
models.

The non-feedback direct inverse method is inadequate for
general purpose applications. In order to apply the direct
inverse control method to the present application,
modifications to the method are necessary. Therefore,
the present implementation of this method additionally
includes an iterative, feedback loop for robusiness, and a
simple halving technique in order to speed up the neural
controller's convergence.

Neural Control Implementation

A block diagram of the present overall neural network
control procedure is shown in Fig. 2. For illustrative
purposes, this diagram is drawn using the control phase
as the relevant feedback parameter. The SIMO case
(noise and hub loads objective function) is used as an
example in the following description.

In reference to the plant model, the 2P control phase
input is the x-axis value, the noise and hub loads
objective function is the nonlinear y-axis value. If the
axes were to be simply inverted, the noise and hub loads
objective function becomes the x-axis value and the 2P
control phase input becomes the y-axis value. In this
inverted system, a given noise and hub loads objective
function does not result in a unique 2P control phase
input value (such non-uniqueness has been discussed
earlier).

The present control procedure calls only for inverting the
axes of the plant model data. This inverted-axes control
modeling step "inverts the axes” by using the noise and
hub loads objective function as the independent, or input,
parameter on the x-axis and the neural network predicted
2P control phase output parameter on the y-axis.
Subsequently, an appropriate type of neural network is
trained using this inverted-axes data set, thus completing
the inverted-axes control modeling step. This step yields
a unique x-y relationship corresponding to the input-
output relationship of the appropriate neural network.
For clarity and brevity, the neural network associated
with the inverted-axes control modeling step is referred
to as the inverted neural network for control (INNC).

The present scheme works for the cases considered
because the back-propagation network representing the
inverted neural network for control is always able to
capture the appropriate functional form of a unique y-
axis value for any x-axis value. This is achieved in part

since the scheme exploits an artifact of the back-
propagation neural network: for extrapolative
calculations where training data do not exist, the network
output is an approximate average of the existing
neighboring data points.

Neural Control Procedure Initiation. Since itis
possible to perform accurate identification in the present
rotorcraft application, the plant is not included in the
neural control procedure (“direct” procedure). The
present neural control procedure as outlined in Fig. 2 can
be initiated in two ways: 1) inputting a desired noise and
hub loads objective function into the inverted neural
network for control or 2) inputting a starting value of the
control phase input into the plant model. In this study,
the neural control procedure was initiated by inputting a
2P control phase input into the plant model.

Neural Control Implementation Details. A simple
half-interval calculation which halves the current
objective function J (or the transformed objective
function - see Case 4 in the Results section) is used at
each iterative step (Fig. 2). The iterative control
procedure is terminated when the noise and hub loads
objective function has converged, that is, has reached a
practical global minimum. This approach can also
accommodate the application where a desired objective
function is specified in advance. This paper does not
include results for such an application.

Present Application

Data used in this study were obtained from the second
U.S./German Individual Blade Control wind tunnel test
(Swanson et al., Refs. 5 and 6, Jacklin, et al., Ref. 7).
The test article was a four-bladed BO-105 hingeless rotor
system fitted with IBC electro-hydraulic actuators and
the test was performed in the NASA Ames 40- by 80-
Foot Wind Tunnel, as mentioned earlier.

Four advancing side microphone measurements (Ref. 5)
were used in the present study and combined into a single
metric by taking their average (giving the present ASNM
which is discussed in the section on Plant Model). Five
vibratory hub loads (axial, side, and normal forces, and
pitching and rolling moments) were obtained (Ref. 7)
from the Rotor Test Apparatus steady/dynamic rotor
balance in the fixed system. In this study, all loads were
referenced to the rotor hub. These loads were combined
into a single metric (by taking the square root of the sum
of the squares of each load with equal weighting for each
load component, giving the metric VHLM),

The test condition considered in the present study is a
high-BVI condition (Ref. 5). This condition is one of
simulated descent at an airspeed of approximately 65
knots (U = 0.15), Mtip = 0.64, and CT/o = 0.075. Other
test parameters are: og = 2.9 deg, £ = 425 RPM, with the



hub pitching and rolling moments trimmed to 1600 ft-1b
and -350 ft-1b, respectively. This descent condition is
equivalent to a 5.6 deg glide slope angle.

The m'th harmonic IBC pitch input for the i'th blade is
defined as:

Oim = Am sin [m (yj+90 deg) + Pl )

The present application includes five cases and the
results from the first four cases help in directly assessing
the neural controller’s convergence behavior, robustness,
and accuracy. The fifth case considers the performance
of a traditional, one-step deterministic controller as “re-
applied” to the first three cases. The five cases are
outlined below.

Case 1. Noise Control: This case considers the
variation of the advancing side noise metric with 2P
control phase input ®2 with a constant control amplitude
Ao = 1deg. The IBC data base for this case has 12 data
points (@7 = 0 to 330 deg at 30 deg intervals). During
the neural network plant modeling step, periodicity of the
metric is ensured by including an additional 13th data
point at 360 deg. For this case, the variation of this
advancing side noise metric (ASNM) has an ill-defined
minimum (Fig. 3). At the same time, for this relatively
flat minimum, ®7 values between 150 deg and 240 deg
are acceptable control inputs that will result in acceptably
low advancing side noise levels (Fig. 3). For this case,
the neural control procedure is initiated with a 2P control
phase input ®2N, 0 = 0 deg.

Case 2. Noise and Hub Loads Control: This case is the
basic benchmark case, and addresses simultaneous
control of advancing side BVI noise and vibratory hub
loads. This case considers the variation of the noise and
hub loads objective function with 2P control phase input
@7 with a constant control amplitude A2 =1 deg. The
IBC data base for this case has 12 data points (@2 =0to
330 deg at 30 deg intervals). The advancing side BVI
noise metric input data are the same as in Case 1 above,
with the vibratory hub loads metric input data being the
same as those in Ref. 10. During the neural network
plant modeling step, periodicity of the objective function
is ensured by including an additional 13th data point at
360 deg. The neural control procedure is initiated with a
2P control phase input ®7N, ¢ = 0 deg.

Case 3. Starting Point Sensitivity: Using the neural
controller from Case 2, a parametric study that assesses
the neural controller’s robustness is conducted in Case 3.
The effect on neural controller convergence of initiating
the iterative control procedure using four different
starting values of the 2P control phase input (0, 180, 240,
and 270 deg) is studied.

Case 4. Reduced Data Base: Here, the Case 2 12-point
data set is split into two smaller 6-point data sets based
on odd- and even-numbered selections. These two
“reduced data base” cases are called Cases 4a and 4b,
respectively. Case 4 is important since the results can be
used to assess the impact of reducing the number of
training data points made available to that part of the
neural control procedure which provides an updated
estimate of the 2P control phase input.

Case 5. One-Step Deterministic Controller: In addition
to the results from the present neural controller, results
from a traditional, one-step deterministic controller
(Johnson, Ref. 23) were calculated for three cases
corresponding to Cases 1, 2 and 3. The one-step
deterministic controller cases are called Cases 5a, 5b, and
Sc, respectively.

Inverted Neural Network for Control

Depending on the application case under consideration,
the network input for the inverted neural network for
control (INNC) is as follows:

a. For Case 1 (SISO case), the noise alone is the
objective function, and thus the metric ASNM is
the network input for INNC.

b. For Cases 2 and 3 (SIMO cases), the combined
noise and hub loads objective function J is the
network input for INNC.

¢. For Case 4 (SIMO case), where a nonlinear
transformation is applied to J, the transformed
objective function JT is the network input for
INNC.

For all four cases, the network output is the predicted 2P
control phase input ®2N. The inverted neural network
for control is trained with 12 input data points in Cases 1
and 2, and six points in Case 4. Overall, the best inverted
neural network for control can be determined only after
the neural control results for Cases 1.to 4 are computed.
At present, the overall conclusion is that a 1-2-3-1 back-
propagation neural network can be successfully used as
the inverted neural network for control for all the neural
control cases considered in this study.

Reference 10 had presented both "small-metric” and
"large-metric" results (network outputs) for the inverted
neural network for control for which the metric VHLM
was the input. In Ref. 10, a large-metric behavior of the
desirable type was one that displayed an almost constant
value of the 2P control phase input at large values of the
input metric. In the present study, depending on the
application case, the following “behaviors”
corresponding to the "large-metric” behaviors of Ref. 10
are relevant:



a. Case 1: "large ASNM" ("large noise-metric')
behavior,

b. Cases 2 and 3: "large J" ("large noise-and-hub-
loads-objective-function™) behavior.

c. - Case 4: "large JT" ("large transformed-noise-
and-hub-loads-objective-function™) behavior.

Since in the present study, all of the above three
behaviors were of the desirable type, the present study
does not present results on these behaviors. Results
corresponding to the "small-metric" behavior of Ref. 10
are presented in this study and are as follows:

a. Case 1: "small ASNM" ("small noise-
metric") behavior.

b. Cases 2 and 3; "small J" ("small noise-and-
hub-loads-objective-function") behavior.

c. Case4: "small JT" ("small transformed-noise-
and-hub-loads-objective-function") behavior.

Results

The application of neural network control was conducted
using the neural networks package NeuralWorks Pro
I/PLUS (version 5.2) by NeuralWare (Ref. 24). The Pro
I/PLUS package was installed on an ACER Acros
personal computer with an Intel 486DX2/66 central
processor. All network applications required
approximately two minutes of clock time in order to
complete the training step.

Results for the neural control cases are presented in the
following sequence: plant model results, inverted neural
network for control results, and finally, the neural
controller’s convergence sequence. Results on
simultaneous neural control of noise and vibratory hub
loads are given in the section on neural controller's
convergence.

Case 1. Noise Control

Plant Model. Figure 3 shows the advancing side noise
metric's variation with the 2P control phase input @7 for
a constant 2P control amplitude Ag = 1 deg. In the
figure, the solid circles represent metric values derived
from the IBC test data. The baseline (no IBC, A2 =0
deg) noise metric's value is ASNM = 116 dB (rounded
off from 115.5 dB) and the IBC test-based minimum
metric's value is ASNM = 108 dB (at 7 = 210 deg).
Figure 3 also shows the plant modeling results obtained
from the 1-12-4-1 RBF neural network that was trained
using 13 input data points. The 1-12-4-1 RBF network
was trained for 10,000 iterations; the final RMS error
was 0.01.

Inverted Neural Network for Control. The outputs
from the 1-2-3-1 back-propagation neural network used

as the inverted neural network for control are shown in
Fig. 4. This neural network was trained with 12 IBC test
data points. The 1-2-3-1 back-propagation network was
trained for 20,000 iterations; the final RMS error was
0.50. As can be seen from Fig. 4, the network output is
constant, giving a ®2 = 165 deg. Unlike the present
constant variation in Fig. 4, the inverted neural networks
for control that were considered in Ref. 10 were of a
shape similar to that of a sigmoid function. In fact, in the
present study, the inverted neural network for control
results for Cases 2, 3, and 4 all have a sigmoidal shape.
The relatively flat, ill-defined minimum that occurs in the
variation of Fig. 3 and again, with axes inverted, in Fig. 4
is responsible for the constant network output in the case
under consideration, Case 1.

Neural Controller Convergence. For Case 1, due to the
constant output of the inverted neural network for
control, the converged solution of the neural controller is
simply determined by the plant model output for @ =
165 deg. The neural controller produces an acceptable,
converged minimum noise metric of ASNM = 109 dB
where the baseline metric (no IBC, A =0 deg) was 116
dB.

Case 2. Noise and Hub Loads Control

Plant Model. Figure 5 shows the advancing side noise
metric and the vibratory hub loads metric on a plot with
two vertical axes. These variations are shown with the
varying 2P control phase input ®7 for a constant 2P
control amplitude A2 = 1 deg. In the figure, the solid
circles represent the measured advancing side noise
metric values and the solid squares represent the
measured vibratory hub loads metric values. The
baseline (no IBC, A2 =0 deg) ASNM and VHLM
values are 116 dB (Case 1) and 578 (Ref. 10),
respectively. The IBC test-based minimum ASNM is
108 dB (at &2 = 210 deg). The IBC test-based minimum
VHLM is 211 (at @7 = 240 deg). Figure 5 also shows
the plant modeling results obtained from the SIMO 1-12-
4-2 RBF neural network that was trained using 13 input
data points. The 1-12-4-2 RBF network was trained for
10,000 iterations; the final RMS error was 0.03. This 1-
12-4-2 RBF neural network is also used as the plant
model in Cases 3 and 4.

Noise and Hub Loads Objective Function: The present
noise and hub loads objective function was calculated
from Eq. (1) with the weight WasNM taken as 100,
giving:

J = (100) ASNM2 + VHLM2 3)
Figure 6 shows the resulting noise and hub loads

objective function (Eq. 3) using both IBC test data and
the SIMO 1-12-4-2 RBF neural network plant model.



WasNM was selected based on the following reasons. A
representative value of the metric-ratio (hub loads
metric/noise metric) was used to determine the weight
WasnM- The actual weight used was the square of this
ratio in the present quadratic objective function
formulation. An example of a representative ratio would
be one corresponding to the minimum values of the hub
loads and noise metrics. Two. other two types of ratios
that can be considered are those based on the baseline
values of the hub loads and noise metrics, and the
maximum values of the hub loads and noise metrics. In
other applications, if necessary, representative ratios
other than those presently discussed may have to be
considered. Based on IBC test data (Fig. 5), the present
estimates of the above three metric-ratios are as follows:

Metric-Ratio Metric-Ratio Metric-Ratio
Type VHIM / ASNM Estimate
Minimum 211/108 2
Baseline 578/ 116 5
Maximum 1210/ 118 10

In the present study, the selected metric-ratio was the
largest of the above three metric-ratios, namely, 10,
giving a weight Wasnm of 100. This weight selection
ensures that the noise metric ASNM plays a significant
role in the objective function. The present neural
network control application, with a weight W osnM of
100, produced substantial, simultaneous reductions in
noise and hub loads (as can be seen from the results of
Cases 2, 3, and 4 which are presented as follows).

The IBC test-based baseline value (no IBC input, A2 =0
deg) of the above combined noise and hub loads
objective function (WASNM =100) was 1.68 x 106 (Fig.
6); with an IBC input of Ap = 1 deg, the minimum value
of this objective function occurred at ©9 = 240 deg and J
was 1.23 x 100,

Figure 6 shows that the present noise and hub loads
objective function J does not appear to have a minimum
as well-defined as the minimum in the VHLM variation
encountered in Ref. 10 (same as the VHLM variation in
the present Fig. 5). The VHLM variation (Fig. 5) has
two clearly defined minimums, whereas Fig. 6 shows that
arelatively flat minimum exists between ® = 180 and
270 deg for the present objective function.

Inverted Neural Network for Control. The outputs
from the 1-2-3-1 back-propagation neural network used
as the inverted neural network for control are shown in
Fig. 7. This neural network was trained with 12 IBC test
data points. The 1-2-3-1 back-propagation network was
trained for 20,000 iterations; the final RMS error was
0.27.

Figure 7 shows that the shape of the predicted network
output appears to be close to that of a sigmoid function.
This could be an attribute of the present inverted neural
network for control that is due to an inherent property of
the back-propagation neural network. As described in
the following section, in general, the above mentioned
behavior of the 1-2-3-1 back-propagation neural network
is sufficient to make the neural control scheme
successful.

Neural Controller Convergence. In the present case,
the controller cycle is initiated with a 1 deg 2P control
amplitude with phase ®2N, 0 = 0 deg. Figures 8a and
8b show results from the present neural network
controller. The neural controller produces a converged
minimum noise and hub loads objective function (J =
1.30 x 106) in three iterations (Fig. 8a). The
corresponding converged optimal 2P control phase input
(®2N, 3) predicted by the neural controller is 240 deg

(Fig. 8b).

Figures 9a and 9b show the advancing side noise metric
and vibratory hub loads metric corresponding to the 2P
control phase input results shown in Fig. 8b. These
metrics were obtained by inputting the neural-controller-
derived 2P control input value into the SIMO 1-12-4-2
RBF network plant model which outputs the
corresponding ASNM and VHLM values. The neural
controller produces a converged minimum advancing
side noise metric (111 dB) and a converged minimum
vibratory hub loads metric (267). Thus, the neural
controller is able to achieve simultaneous reductions of 5
dB in the advancing side noise metric and 54% in the
vibratory hub loads metric, with respect to the baseline
metrics.

Case 3. Starting Point Sensitivity

In Case 3, the starting values of the 2P control phase
input ®2N;, ( are varied and specified as 0 deg (same as
in Case 2), 180, 240, and 270 deg. These values were
selected to assess the neural network controller's
robustness. The plant model and the inverted neural
network for control are the same as those used in Case 2.

Neural Controller Convergence. Figures 10a and 10b
show the neural controller convergence sequences for the
objective function and the 2P control phase input for the
four starting values. Table 1 below shows the
corresponding numerical values in which the halving step
(Fig. 2) is also noted. The identified halved objective
function is the input to the inverted neural network for
control at the next iterative cycle. The 240 deg starting
point subcase (2N, 0 = 240 deg) required two iterations
to converge whereas the other three subcases required
three iterations to converge. The objective function



converged to a value of 1.30 x 100 for all four subcases
(Fig. 10a). The corresponding predicted, converged 2P
control phase input is 240 deg for all four subcases (Fig.
10b).

Figures 11a and 11b show the convergence of the
advancing side noise metric and vibratory hub loads
metric. The converged values are the same as in Case 2,
namely, a converged minimum advancing side noise
metric of 111 dB and a converged minimum vibratory
hub loads metric of 267. The iterative results are shown
in Table 2 and indicate that the present noise and hub
loads neural controller is insensitive to a starting point for
the current study.

Table 1. Objective Function
Starting Point Sensitivity,
Neural Control

Iterat- 2P control Identified/ 2P control
ion phase Halved phase input
No. inputintoPM  Obiect. from INNC
deg Funct. (x 10-6) deg
Starting Point = 0 deg
0 0 2.48/1.24 237
1 237 1.30/0.65 240
2 240 1.30/0.65 240
3 240 1.30
Starting Point = 180 deg
0 180 1.45/0.72 240
1 240 1.30/0.65 240
2 240 1.30/0.65 240
3 240 1.30
Starting Point = 240 deg
0 240 1.30/0.65 240
1 240 1.30/0.65 240
2 240 1.30
Starting Point = 270 deg
0 270 1.41/0.70 240
1 240 1.30/0.65 240
2 240 1.30/0.65 240
3 240 1.30

(PM: plant model, INNC: inverted neural network for
control)

Case 4. Reduced Data Base

This case has two subcases, Cases 4a and 4b. During the
inverted neural network for control modeling step, these
two subcases use two different “reduced data base” 6-
point training data sets. In Case 4a, the six odd-
numbered training points from the original 12-point

Table 2. Noise and Hub Loads
Starting Point Sensitivity,
Neural Control

Iterat- 2P control Identified
ion phase ASNM/
No.  inputintoPM  VHLM
deg
Starting Point = 0 deg
0 0 109dB /1132
1 237 110 dB /289
2 240 111 dB /267
3 240 111 dB /267
Starting Point = 180 deg
0 180 109 dB /512
1 240 111 dB /265
2 240 111 dB /267
3 240 111 dB /267
Starting Point = 240 deg
0 240 111 dB /267
1 240 111dB /267
2 240 111 dB /267
Starting Point = 270 deg
0 270 117dB /218
1 240 111 dB /265
2 240 111dB /267
3 240 111dB /267

(PM: plant model)

training data set (IBC test data) are used; similarly, in
Case 4b the six even-numbered points are used. The
plant models for Cases 4a and 4b are the same as those
used in Case 2 (13-point training data set).

Objective Function Transformation. The variation of
the present noise and hub loads objective function with
the 2P control phase input ©7 does not have a clearly
defined minimum (Fig. 6); instead, a relatively flat trend
exists in this variation between @7 = 180 and 270 deg
(Fig. 6). Also, unlike the simpler application considered
in Ref. 10, which involved inverted neural network for
control x-axis inputs of the order of 103, the present
application involves inverted neural network for control
x-axis inputs of the order of 106. In order to obtain
simultaneous reductions in the advancing side noise
metric and the vibratory hub loads metric in the present
reduced data base cases, a nonlinear transformation
(scaling) of the objective function was introduced.
Without such a transformation, the output variations of
the inverted neural networks for control for the
"untransformed" reduced data base cases are not "well



behaved": that is, their extrapolated segments (PN
values near J = 0) were not able to produce simultaneous
reductions in noise and hub loads.

In order to obtain well-behaved outputs of the inverted
neural network for control with the goal of producing
simultaneous noise and hub loads reductions, the
following two steps were introduced for Case 4, the
Reduced Data Base case:

1. The objective function J was divided by its
baseline value giving the nondimensional
objective function IND = (J/JgsL.N). This step
precludes the occurrence of any problems that
could arise due to the objective function being
of the order of 100, However, the immediate
consequence from this step is thata
nondimensional noise and hub loads objective
function is more amenable to subsequent
transformation since it is of the order of 1 (100).

2. An appropriate transformation that would make
the nondimensional objective function JND
variation less flat was introduced. Subsequent
to such a transformation, values of JND less than
one would get smaller and values of IND greater
than one would get larger. The transformed
objective function variation (JT) produces well-
behaved inverted neural network for control
outputs (Case 4).

The presently transformed noise and hub loads objective
function J is given as follows:

JT=INDM = JABSLN n>1 @)

The parameter "n" was determined in the present case by
making the minimum value of the present JT =

AL (at @7 = 240 deg) approximately the same
(or smaller) as the minimum value of the nondimensional
ratio (VHLM/VHLMgsLN) (also at ©3 = 240 deg) that
was encountered in the successful vibratory hub loads
application considered in Ref. 10. This is shown as
follows:

n Min, VHLM/VHLMRBSI N Min. JT
1 0.37 0.74
2 0.37 0.54
3 0.37 040
4 0.37 0.29

In the present study, the parameter "n" was selected as 4.
Figure 12 shows the variations of the transformed
objective function JT and the unscaled, nondimensional
IND. The two 6-point data bases required in Cases 4a

and 4b were selected from the 12-point JT data base. In
the present overall neural network control procedure
(Fig. 2), the quantity that is actually input to the Case 4
inverted neural network for control is the halved value

given as follows: [(J/2)/TBsLNI%.
Case 4a. Odd-Numbered, Six Point Data Base

Inverted Neural Network for Control: Figure 13 shows
the output of the 1-2-3-1 back-propagation neural
network used as the inverted neural network for control.
This network was trained using the odd-numbered six
point data base. The 1-2-3-1 back-propagation network
was trained for 20,000 iterations; the final RMS error
was 0.23. Figure 13 shows that the appropriate
functional form for the output of the inverted neural
network for control can be generated from six, odd-
numbered training points instead of the baseline twelve

points (Fig. 7).

Neural Controller Convergence: The controller
iterations were initiated with a 1 deg control amplitude
with a starting 2P control phase ®2N, ¢ = 0 deg. Figure
14a shows that the present neural controller converges in
three iterations to a value of J = 1.32 x 100, Figure 14b
shows that the corresponding converged optimal 2P
control phase input ®2N, 3 predicted by the neural
controller is 248 deg. This compares favorably to a
converged J of 1.30 x 100 at a 2P control phase input of
240 deg from Cases 2 and 3.

Figures 15a and 15b show the advancing side noise
metric and the vibratory hub loads metric corresponding
to the 2P control phase input results shown in Fig. 14b.
The converged advancing side noise metric ASNM was
112 dB and the vibratory hub loads metric VHLM was
228. For the odd-numbered, six-point case, the present
noise and hub loads neural controller was able to achieve
simultaneous reductions of 3 dB (taking into account
round-off error) in the advancing side noise metric and
61% in the vibratory hub loads metric.

Case 4b. Even-Numbered, Six Point Data Base

Inverted Neural Network for Control: Figure 16 shows
the output of the 1-2-3-1 back-propagation neural
network used as the inverted neural network for control.
This network is trained using the even-numbered six
point data base. The 1-2-3-1 back-propagation network
was trained for 20,000 iterations; the final RMS error
was 0.26. Figure 16 shows that the appropriate
functional form can be generated from six, even-
numbered training points instead of the baseline twelve

points (Fig. 7).

Neural Controller Convergence: The controller
iterations were initiated with a 1 deg 2P control
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amplitude with a starting 2P control phase ®2N, 0 =0
deg. Figure 17a shows that the present neural controller
converges in three iterations to an objective function J of
1.30 x 106. Figure 17b shows that the corresponding
converged optimal 2P control phase input ®2N, 3
predicted by the neural controller is 233 deg.

Figures 18a and 18b show the advancing side noise
metric and the vibratory hub loads metric corresponding
to the 2P control phase input results shown in Fig. 17b.
The corresponding converged advancing side BVI noise
metric ASNM was 110 dB and the vibratory hub loads
metric VHLM was 317. For the even numbered, six-
point case, the present neural controller was able to
achieve simultaneous reductions of 6 dB in the advancing
side noise metric and 45% in the vibratory hub loads
metric.

The preceding results from Cases 1 to 4 indicate that the
inverted neural network for control modeling step is
sufficiently robust and accurate for the present neural
control purposes involving control of noise and hub
loads.

Case 5. One-Step Deterministic Controller

Using linear transfer-function identification theory and
the quadratic performance function formulation
(Johnson, Ref. 23), the performance of a one-step
deterministic controller is assessed in Case 5.

Linear Transfer-Function Matrix Identification. The
vector of responses (advancing side noise metric and the
vibratory hub loads) is assumed to vary linearly with the
control input as given below:

{z}=[T](06}

Here, { z } is the response vector, [ T ] is the linear
transfer-function matrix, and {0 } is the control input
vector. In the present case, the vectors { z } and { 6 } are
made up of the experimental advancing side noise metric
and the vibratory hub load components, and 2P control
sine and cosine phase inputs, respectively. For present
implementation purposes, the original (Ref. 10) response
vector { z } (with 10 elements corresponding to the 10
vibratory hub loads components), was augmented by
including the noise metric as the 11th element, thus
giving the present response vector { z } with 11 elements.

The present one-step deterministic controller applications
include one advancing side noise metric (average) and
ten vibratory hub load components (sine and cosine
components of five hub load components). Separate
single harmonic sine and cosine least-square fits from
twelve measurements (2P control phase input varying
from 0 deg to 330 deg in 30 deg increments) are used to
determine the elements of the T-matrix.
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Optimal One-Step Deterministic Control Input. The
optimal control input is calculated based on a quadratic
performance function with the advancing side noise
metric weighted 100 times more than the vibratory hub
loads components, with all vibratory hub loads responses
equally weighted. The performance function is defined
as follows:

I={z}T[(Wz1{z}

For the present one-step deterministic controller, the
optimal control input vector is calculated using Eq. Al
(Appendix). In Eq. Al, the 2 x 1 vector of optimal

control inputs { 8* } consists of the sine and cosine
components from which the 2P control optimal phase
input is calculated. In the following, the subscript “s”
refers to the starting condition for the one-step
deterministic controller.

Case 5a. Noise Control: This case involves the
advancing side noise variation only, Fig. 3. A single
harmonic sine and cosine least-square fit was used to
determine the best 2P control phase input, and the
resulting value was 140 deg. With this 2P control phase
input of 140 deg, the SISO 1-12-4-1 RBF plant model
gave an advancing side noise metric of 110 dB. For
purposes of comparison, the neural network control
results for the corresponding case (Case 1) were as
follows: a 2P control phase input of 165 deg and a
corresponding advancing side noise metric of 109 dB.

Case 5b. Baseline Results: In Case 5b, the starting
condition is the baseline condition: { 0 }g= {0 } deg
(no IBC, A2 = 0 deg), and with the starting response
vector { z } ¢ taken as the baseline experimental
advancing side noise metric and hub loads vector (ten
vibratory hub load sine and cosine components). Here,
ASNM and VHLM are calculated using the plant model
of Case 2 and requiring that the 2P control amplitude
inputis 1 deg .

For Case 5b, the present one-step, noise and hub loads
deterministic controller predicts an optimal 2P control
phase input of 207 deg. Using the SIMO 1-12-4-2 RBF
plant model, the corresponding advancing side noise
metric was calculated to be 107 dB and the vibratory hub
loads metric was 507. For purposes of comparison, the
neural network control results of Cases 2 and 3 were as
follows: a converged 2P control phase input of 240 deg,
and a corresponding advancing side noise metric of 111
dB and a vibratory hub loads metric of 267. The present
observation is that the two control methods give different
minimums. The one-step deterministic controller gives
an "acoustic" solution in which only the noise is reduced
with a small reduction in the vibration. The neural
controller simultaneously controls both acoustic and



vibration levels, with substantial reductions in both.
Note that the starting conditions are different for these
two methods: the one-step deterministic controller starts
out with the baseline condition whereas the neural
controller starts out with a non-zero 2P control phase
input.

Case Sc. Starting Point Sensitivity: In Case 5c, each of
the four sets of { 8 }g and { z }g vectors is separately
determined by the following four 2P control phase input

values: 0, 180, 240, and 270 deg , each with Ap = 1 deg .

The control input vector { 6 }g is directly obtained from
the 2P control phase input under consideration, and the
starting response vector { z }g is taken as the
experimental advancing side noise metric and the hub
loads vector corresponding to the particular 2P control
phase input under consideration. The table below shows
the results of the sensitivity study which evaluates the
performance of the one-step deterministic controller
performance for the four starting points.

The “starting point sensitivity” one-step deterministic
controller results shown in Table 3 below can be
compared to those from the neural controller (Case 3,
Table 2). This comparison shows that for advancing
side noise and vibratory hub loads control, the two
control methods can give different solutions, with neural
control being more robust. The one-step deterministic
controller yields relatively poor simultaneous reductions
for the 270 deg starting condition (ASNM = 108 dB and
VHLM = 533, as obtained from the SIMO 1-12-4-2 RBF
plant model) as compared to the corresponding neural
network result (Table 2, ASNM =111 dB, VHLM =
267).

Table 3. Starting Point Sensitivity,
One-Step Deterministic Control, Ay = 1 deg

Starting 2P Predicted Predicted
control phase ASNM/ 2P control phase
input VHLM input
deg deg
0 111dB /253 242

180 112dB /243 244

240 111dB /270 240

270 108 dB /533 195

Concluding Remarks

The application of neural networks to simultaneous
control of rotorcraft acoustics and dynamics is new. The
objective of the present study was to develop a robust
neural-network-based controller to simultaneously

minimize BVI noise and vibratory hub loads. An
objective function consisting of the weighted sum of the
squares of a four-microphone-average-of-advancing-side-
BVI-noise and a vibratory-hub-loads-metric was used to
characterize the rotor BVI noise and vibratory hub loads.
The noise and hub loads data were obtained from a wind
tunnel test of a four-bladed rotor with individual blade
control during simulated descent. The present neural
network control procedure was bound by the following
ground rules: the controller must converge in six
iterations or fewer and gradient-based optimization
techniques must not be used.

A simple iterative procedure for neural control was
applied. Two neural networks were used in the
procedure requiring a plant model (using a radial-basis
function neural network) and separately, an inverted
neural network for control model (using a back-
propagation neural network). A nonlinear transformation
was applied in the reduced data base case in order to
make the present neural network control procedure
successful for this case as well. The training of each
network required approximately two minutes of clock
time. Within the overall, iterative neural network control
procedure, a simple calculation which halves the noise
and vibratory hub loads objective function was used in
order to speed up convergence.

The neural network controller was successful in
achieving convergence within a limited number of
iterations while being robust and computationally
efficient.

Four neural network control cases and a single, one-step
deterministic control application case were considered in
this study. The cases involved variation in the individual
blade control 2P control phase input (2P control
amplitude fixed). Specific findings from the present
study were as follows:

1. The present study showed that simultaneous neural
network control of advancing side blade vortex
interaction noise and vibratory hub loads can be
considered in the same overall manner as neural
network control of only vibratory hub loads.

2. In order to obtain simultaneous reduction of
advancing side blade vortex interaction noise and
vibratory hub loads in the neural network reduced
data base case, it was necessary to introduce a
nonlinearly transformed objective function to obtain
an appropriate inverted neural network for control.

3. The present neural network controller successfully
achieved the objective of simultaneous, substantial
reductions in advancing side blade vortex interaction
noise (5 dB reduction) and in vibratory hub loads
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(54% reduction) within six iterations without using
gradient-based optimization techniques.

4. Results from the four neural control cases showed
that the present neural network control procedure is
robust.

5. A comparison of the results from the present neural
controller with those from a one-step deterministic
controller showed that the twe control methods can
give different solutions, with neural control being
more robust.

Acknowledgments

The author wishes to thank Donald Soloway and Chuck
Jorgensen (NeuroEngineering Group, Computational
Sciences Division, NASA Ames) for their invaluable
help.

References

1. Schmitz, F.H., "Rotor Noise," Aeroacoustics of
Flight Vehicles: Th nd Practice, Volume 1; Noi
Sources, edited by Hubbard, H.H., NASA Reference
Publication 1258, Vol. 1, WRDC Technical Report 90-
3052, 1991.

2. Kitaplioglu , C., Caradonna, F.X., and Burley, C.L.,
"Parallel Blade-Vortex Interactions: An Experimental
Study and Comparison with Computations,” American
Helicopter Society Second International Aeromechanics
Specialists Conference, Bridgeport, Connecticut, October
1995.

3.  McCluer, M., Baeder, J.D., and Kitaplioglu, C.,
"Comparison of Experimental and Blade-Vortex
Interaction Noise with Computational Fluid Dynamic
Calculations,” American Helicopter Society 51st Annual
Forum, Fort Worth, Texas, May 1995.

4. Kottapalli, S., Swanson, S., LeMasurier, P., and
Wang, J., "Full-Scale Higher Harmonic Control Research
to Reduce Hub Loads and Noise," American Helicopter
Society 49th Annual Forum, St. Louis, Missouri, May
1993.

5. Swanson, S., Jacklin, S.A., Blaas, A., Niesl, G., and
Kube, R., "Acoustic Results from a Full-Scale Wind
Tunnel Test Evaluating Individual Blade Control,"
American Helicopter Society 51st Annual Forum, Fort
Worth, Texas, May 1995.

6. Swanson, S., Jacklin, S.A., Blaas, A., Kube, R., and
Niesl, G., "Individual Blade Control Effects on Blade-
Vortex Interaction Noise," American Helicopter Society
50th Annual Forum, Washington, D.C., May 1994.

13

7. Jacklin, S., Blaas, A., Kube, R., and Teves, D.,
"Reduction of Helicopter BVI Noise, Vibration, and
Power Consumption through Individual Blade Control,"
American Helicopter Society 51st Annual Forum, Ft.
Worth, Texas, May 1995,

8. Miao, J., Kottapalli, S.B.R., and Frye, H.M., "Flight
Demonstration of Higher Harmonic Control (HHC) on S-
76," American Helicopter Society 42nd Annual Forum,
Washington, D.C., June 1986.

9. O'Leary,J.J.,, Kottapalli, S.B.R., and Davis, M.,
"Adaptation of a Modern Medium Helicopter (Sikorsky
S-76) to Higher Harmonic Control,” 2nd Decennial
Specialists Meeting on Rotorcraft Dynamics, NASA
Ames Research Center, Moffett Field, California,
November 1984,

10. Kottapalli, S., "Identification and Control of
Rotorcraft Hub Loads Using Neural Networks,"
American Helicopter Society 53rd Annual Forum,
Virginia Beach, Virginia, April-May 1997.

11. Kottapalli, S., Abrego, A., and Jacklin, S.,
"Application of Neural Networks to Model and Predict
Rotorcraft Hub Loads,” American Helicopter Society
Second International Aeromechanics Specialists
Conference, Bridgeport, Connecticut, October 1995.

12. Kottapalli, S., Abrego, A., and Jacklin, S., "Multiple-
Input, Multiple-Output Application of Neural Networks
to Model and Predict Rotorcraft Hub Loads,” Sixth
International Workshop on Dynamics and Aeroelastic
Stability of Rotorcraft Systems, Los Angeles, California,
November 1995.

13. Handbook of Intelligent Control (Neural, Fuzz
Adaptive Approaches), edited by White, D. A. and Sofge,
D.A., Van Nostrand Reinhold, New York, 1992.

14. Neural Networks for Control, edited by Miller, W.T.,
Sutton, R.S., and Werbos, P.J., The MIT Press,
Cambridge, Massachusetts, 1990.

15. Advanced Methods in Neural Computing,
Wasserman, P.D., Van Nostrand Reinhold, New York,
1993,

16. Werbos, P.J., “Neurocontrol and Supervised
Learning: An Overview and Evaluation,” Handbook of
Intelligent Control (Neural, Fuzzy, and Adaptiv
Approaches), edited by White, D. A. and Sofge, D.A.,
Van Nostrand Reinhold, New York, 1992.

17. Neuro-Control and its Applications, Omatu, S.,
Khalid, M., and Yusof, R., Advances in Industrial
Control, Springer, 1996.



18. Neural Networks for Identification, Prediction and
Control, Pham, D.T. and Liu, X., Springer, 1995.

19. Psaltis, D., Sideris, A., and Yamamura, A.A., "A
Multilayered Neural Network Controller,” IEEE Control
Systems Magazine, April 1988.

20. Hunt, K.J., Sbarbaro, D., Zbokowski, R, and
Gawthrop, P.J., "Neural Networks for Control Systems-A
Survey," Automatica, Vol. 28, No. 6, 1992, pp. 1083-
1112,

21. Faller, W.E., Schreck, S.J., and Lutges, M.W.,
"Real-Time Prediction and Control of Three-Dimensional
Unsteady Separated Flow Fields Using Neural
Networks," AIAA Paper 94-0532, 32nd Aerospace
Sciences Meeting & Exhibit, Reno, Nevada, January
1994,

22. Narendra, K.S. and Parthasarathy, K., "Identification
and Control of Dynamical Systems Using Neural
Networks," IEEE Transactions on Neural Networks, Vol.
1 (1), March 1990, pp. 4-27.

23. Johnson, W., “Self-Tuning Regulators for
Multicyclic Control of Helicopter Vibration,” NASA
Technical Paper 1996, March 1982.

24. NeuralWorks Manuals:
a. Reference Guide
b. Neural Computing
¢. Using NeuralWorks
NeuralWare, Inc., Pittsburgh, Pennsylvania, 1995.

14



15

Appendix

One-Step Deterministic Controller Equations
Noise and Hub Loads

Optimal Control Input

The optimal one-step deterministic controller control input vector used in the present study is derived as follows. From
Johnson (Ref. 23), the optimal control input is:

{0 In=[C1({z)n-1- [T1{6}n1)
where the subscript “n” refers to a time step and the controller gain [ C ] is given by:
[CI1=-CITITI WL T I TITIW,]

where [ W, ] is the weighting matrix consisting of the weights for the noise metric and the hub loads (sine and cosine
components).

The optimal control input equation is presently used in the following manner in order to calculate the optimal one-step
control input vector:

(6" }=[C1({z)s- [T1({O}s) (A1)

where the subscript “s” refers to the one-step starting condition.
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Fig. 5. Case 2 (Noise and Hub Loads Control}, noise metric and hub loads metric.
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Fig. 6 Case 2 (Noise and Hub Loads Control), noise and hub loads objective function.
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Fig. 7. Case 2 (Noise and Hub Loads Control), output of inverted neural network for control, 12 training
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Fig. 8a. Case 2 (Noise and Hub Loads Control), convergence of objective function J (simultaneous
neural control of noise and hub loads).
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Fig. 8b Case 2 (Noise and Hub Loads Control), convergence of 2P control phase input (simultaneous
neural control of noise and hub loads, Fig. 8a shows corresponding objective function).
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Fig. 9a. Case 2 (Noise and Hub Loads Control ), convergence of noise metric ASNM (simultaneous
neural control of noise and hub loads).
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Fig. 9b. Case 2 (Noise and Hub Loads Control), convergence of hub loads metric VHLM
(simultaneous neural control of noise and hub loads).
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Fig. 10a. Case 3 (Starting Point Sensitivity), convergence of objective function
(simultaneous neural control of noise and hub loads).
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Fig. 10b. Case 3 (Starting Point Sensitivity), convergence of 2P control phase input
(simultaneous neural control of noise and hub loads, Fig. 10a shows corresponding objective
function).
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Fig. 11a. Case 3 (Starting Point Sensitivity), convergence of noise metric ASNM
(simultaneous neural control of noise and hub loads).
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Fig. 11b. Case 3 (Starting Point Sensitivity), convergence of hub loads metric VHLM
(simultaneous neural control of noise and hub loads).
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Fig. 12. Case 4 (Reduced Data Base), noise and hub loads objective functions: transformed and

nondimensional
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Fig. 13. Case 4A (Odd-Numbered, Six Point Data Base), output of inverted neural network for control,
6 training points.
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Fig. 14a Case 4A (Odd-Numbered, Six Point Data Base), convergence of objective
function J (simultaneous neural control of noise and hub loads).
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Fig. 14b Case 4A (Odd-Numbered, Six Point Data Base), convergence of 2P control phase input
(simultaneous neural control of noise and hub loads, Fig. 14a shows corresponding
objective function).
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Fig. 15a. Case 4A (Odd-Numbered, Six Point Data Base), convergence of noise metric ASNM
simultaneous neural control of noise and hub loads).
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Fig. 15b. Case 4A (Odd-Numbered, Six Point Data Base), convergence of hub loads metric VHLM
(simultaneous neural control of noise and hub loads).
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Fig. 16 Case 4B (Even-Numbered, Six Point Data Base), output of inverted neural network
for control, 6 training points.
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Fig. 17a Case 4B (Even-Numbered, Six Point Data Base), convergence of objective
function J (simultaneous neural control of noise and hub loads).
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Fig. 17b Case 4B (Even-Numbered, Six Point Data Base), convergence of 2P control phase input
(simultaneous neural control of noise and hub loads, Fig. 17a shows corresponding
objective function).
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Fig. 18a. Case 4B (Even-Numbered, Six Point Data Base), convergence of noise metric ASNM
(simultaneous neural control of noise and hub loads).
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Fig. 18b. Case 4B (Even-Numbered, Six Point Data Base), convergence of hub loads metric VHLM
(simultaneous neural control of noise and hub loads).



